Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers.

نویسندگان

  • Mark G Little
  • Robert B Jackson
چکیده

Carbon Capture and Storage may use deep saline aquifers for CO(2) sequestration, but small CO(2) leakage could pose a risk to overlying fresh groundwater. We performed laboratory incubations of CO(2) infiltration under oxidizing conditions for >300 days on samples from four freshwater aquifers to 1) understand how CO(2) leakage affects freshwater quality; 2) develop selection criteria for deep sequestration sites based on inorganic metal contamination caused by CO(2) leaks to shallow aquifers; and 3) identify geochemical signatures for early detection criteria. After exposure to CO(2), water pH declines of 1-2 units were apparent in all aquifer samples. CO(2) caused concentrations of the alkali and alkaline earths and manganese, cobalt, nickel, and iron to increase by more than 2 orders of magnitude. Potentially dangerous uranium and barium increased throughout the entire experiment in some samples. Solid-phase metal mobility, carbonate buffering capacity, and redox state in the shallow overlying aquifers influence the impact of CO(2) leakage and should be considered when selecting deep geosequestration sites. Manganese, iron, calcium, and pH could be used as geochemical markers of a CO(2) leak, as their concentrations increase within 2 weeks of exposure to CO(2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential Impacts of Leakage from Deep CO2 Geosequestration on Overlying Freshwater Aquifers

The potential impacts of CO2 on freshwater aquifers outlined by Little and Jackson, 2010 appear, incorrectly, to slay all hope of storing CO2 below ground and retaining safe drinking waters. Without doubt the effects of CO2 addition to drinking water aquifers deserve careful investigation. However, the experiments preformed by Little and Jackson are fatally flawed and there are a number of misl...

متن کامل

Concentration - Dependent Effects of CO2 on Subsurface Microbial Communities Under Conditions of Geologic Carbon Storage and Leakage

Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic CO2 emissions to the atmosphere. During this process, CO2 is injected as super critical carbon dioxide (SC-CO2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO2 in subsurface geologic formations may ult...

متن کامل

Changes in the deep subsurface microbial biosphere resulting from a field-scale CO2 geosequestration experiment

Subsurface microorganisms may respond to increased CO2 levels in ways that significantly affect pore fluid chemistry. Changes in CO2 concentration or speciation may result from the injection of supercritical CO2 (scCO2) into deep aquifers. Therefore, understanding subsurface microbial responses to scCO2, or unnaturally high levels of dissolved CO2, will help to evaluate the use of geosequestrat...

متن کامل

Experimental assessment of CO2-mineral-toxic ion interactions in a simplified freshwater aquifer: implications for CO2 leakage from deep geological storage.

The possible intrusion of CO2 into a given freshwater aquifer due to leakage from deep geological storage involves a decrease in pH, which has been directly associated with the remobilization of hazardous trace elements via mineral dissolution and/or via desorption processes. In an effort to evaluate the potential risks to potable water quality, the present study is devoted to experimental inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 44 23  شماره 

صفحات  -

تاریخ انتشار 2010